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Abstract Though box compression strength (BCS) is commonly used as a performance criterion for shipping con-

tainers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new

tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model

can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and

number of data points. The four factors interact with each other to influence model accuracy and can be optimized by

minimizing model’s Mean Squared Error (MSE). Using both data from the literature and “synthetic” data based on the

McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input param-

eters and the ANN process itself. The population size to build an ANN model has been identified based on different data

sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems

and answer questions in the corrugated industry.
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Introduction

Research into the production and use of corrugated pac-

kaging has produced an enormous amount of literature explo-

ring the structural dynamics of corrugated boxes in use and in

failure1). This history includes various studies2-8) modeling

package failure based on fundamental mechanics of materials,

including the best-known model still in active use, the McKee

equation9). While many factors can influence the strength of a

package, these models primarily focus on package dimen-

sions, the inherent material strength, and either board flexural

stiffness or overall thickness of the box panels. Nonetheless,

these models are limited in their predictive accuracy by the

uncertainty in the measurements of package properties10). The

work by McKee and others was limited because it involved

simplifying more general physical relationships. Fundamen-

tally, these were linear regression analyses based on specific

data sets, typically limited by processing constraints. 

Improvements in processing speed and power have created

opportunities for application of computer-based analysis

methods even for applications as “simple” as the corrugated

box. Finite element analysis (FEA), a powerful technique

often used for simulation of engineering process, is finding a

home in the corrugated industry. FEA models generate pre-

dictions by leveraging fundamental physical mechanics across

different length scales, stitching together functional relati-

onships to estimate the effect of changes in very basic material

properties (e.g., paper elasticity) on the larger final system

(e.g., box strength). The functional form is known; the pro-

pagation of parameters and their impacts produce a prediction

of the result. Various studies have explored using an FEA

approach to predict ECT11-14) or BCS15-24), allowing for detai-

led examination of the impact of moisture, perforations, holes,

and openings, crushing, and more complex structures. The

literature has grown so extensively that even review articles

addressing the usefulness of FEA on broader topics have sec-

tions discussing corrugated paperboard packaging25). Each of

these studies requires detailed information on the material

parameters to input into the models, typically producing rea-

sonable agreement between the model and the limited number

of physical samples evaluated. As such, they potentially con-

tribute to our understanding of the impact of specific changes

examined (i.e., hole size and placement.)18). However, very

few of these studies address or investigate how well their

models work with boxes made of different, varied, or unknown

materials. They also don't often discuss about how the varying

physical and mechanical properties of paper or combined
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board can affect the accuracy of their predictions. Typically,

the input parameters required for an FEA are not properties

regularly measured in the papermaking or box making pro-

cess. Thus, existing (published) analyses cannot reasonably be

used for a generalized assessment of a random box in the

same way that we can use the McKee equation. 

Artificial Neural Networks (ANNs) are a very different

computing approach that can also be used to explore the

underlying relationships in a set of data and generate pre-

dictive models. The concept of ANN was introduced in

195626) and the ANN approach has been utilized in many dif-

ferent applications over the past few decades27). ANNs have

been employed in the marketing domain to enhance com-

munication between companies and their customers28). In the

areas of environment and water management, ANNs have

been leveraged for data virtualization, real-time processing,

and other related activities29). In the government sector, ANNs

have been instrumental in supporting policy-making activities

through impact prediction and resource allocation optimiza-

tion, among other policy making activities30). Additionally,

ANNs have found relevance in the renewable energy sector,

specifically in wind speed prediction, load forecasting, and

prediction activities31). ANNs even have begun to appear in

assessing problems in packaging and supply chains32,33).

ANNs have many advantages because they can strive to

take whatever information we happen to know in terms of

materials inputs and gather relationships to the outputs of inte-

rest. This inference process can take in a broader range of

inputs, teasing out their connections (implicit or explicit) to

“understand” their relationship to a given output. The goal of

ANNs is to minimize the error of the predicted property. By

mapping features in data, ANNs can substantially add to the

power of exploratory data analysis34). Using ANNs can bring

many benefits in scientific research35), making more consistent

decisions and shortening decision-making process36). Given

the fundamentally non-linear relationship between fiber cha-

racteristics and the mechanical properties of paper, combined

board, and boxes, this alternate approach is beginning to gar-

ner interest among researchers37,38). This potentially allows us

to incorporate a large number of input parameters into a single

prediction model, limited only by the size of our data set.

ANN research to date has focused on specific areas or factors

influencing box strength39).

Given the limited existing research, it remains to be seen

whether an ANN can estimate BCS any more accurately than

our historical, closed-form approaches. A properly structured

ANN might be able to identify additional parameters that con-

tribute to BCS with similar level of impact as known existing

factors (e.g., Edge crush test (ECT) value) and thus improve

current models over the known levels of inherent variation in

the input data. In order to leverage those opportunities, we

need to clearly identify the size of the data set required. Com-

pared with many ANN applications which automatically cre-

ate the underlying data to build a model, collecting data point

for BCS estimation model is comparatively expensive, neces-

sitating a series of off-line tests. For ANN modeling of cor-

rugated packaging, the challenges required to generate

sufficient data sets may well be the limiting factor on the capa-

bility of the model.

This study investigates the data requirements for an ANN to

estimate compressive strength and assesses the ANN approach's

ability to overcome input variation limitations in the paper-

making and box manufacturing process. To begin, we apply

the ANN approach to the existing data from McKee's 1963

research. Although the McKee data set proves too small for a

robust ANN study, its well-established nature enables us to

define our ANN methodology. Moreover, it illustrates the

process to readers who are familiar with box compression

modeling but less acquainted with ANNs. Next, we employ

the ANN approach to analyze a significantly larger “syn-

thetic” data set, constructed using idealized data derived from

the McKee equation. This dataset allows us to evaluate the

potential accuracy of an ANN model when applied to an

established large data set and physical relationship. Further-

more, we introduce variation to the input data of the idealized

data set, enabling us to assess how this variation propagates

through the ANN. This investigation addresses the funda-

mental question of data set size and evaluates whether the cur-

rent data collection approaches in the corrugated industry are

sufficiently advanced to support the application of ANN in

assessing box performance. The conclusion has been appro-

priately presented at the end, encapsulating the main findings

and providing a conclusive summary.

1. Artificial Neural Networks (ANN)
The ANN model space is structurally built in three types of

layers: the input layer, the hidden layer and the output layer.

Each layer is comprised of neurons connected to each of the

inputs or neurons in the adjacent layers in the model, as shown

in Figure 1.

The weights of the connections between neurons are the

adjustable model parameters that govern how the model cal-

culates the output from the given inputs. The ANN calculation

process cycle includes a forward step computation of fitting

input data into an ANN and a backward step computation of

calculating errors and updating the weights in the model. A

single iteration of this computational process is termed an

epoch within an ANN.

At the beginning of the ANN process, all weights between

nodes are randomly assigned. The squared difference between

predicted BCS values from our training data and their actual

BCS values is then calculated in equation (1), and the weights

are adjusted via a backpropagation process. 
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  (1)

where n is the number of samples in a trained dataset, and

MSE represents mean squared error

An epoch signifies the process of feeding a dataset into the

model and the model's weights are adjusted to reduce the

overall MSE. This iterative repetition of the process, known as

multiple epochs, continues until the MSE reduction rate falls

below given criteria.

An ANN approach segments a given set of known data into

two uneven groups, training data and testing data. The former

is used to build and refine the model and the latter is used to

evaluate the model accuracy. To assess our ANN, 67% of each

data set were split into training data and the remaining 33%

were split into testing data. Each node in the hidden layers

could be defined based on a weighted sum of the parameters

in the prior layer, as shown in equation (2).

 (2)

 is the value of jth neuron in ith hidden layer. j = 1, 2, 3,…,

n1 when i = 1 ; j = 1,2,3,…, n2 when i = 2.

x
k
 is the value of kth neuron in previous layer, k = 1, 2, 3,…, n.

 is the weight from the kth neuron in previous layer to jth

neuron.

f is the activation function.

To enhance the efficiency, an activation function was added

in the hidden layers. The Rectified Linear Unit (ReLU) is the

default activation function for hidden layers and perhaps the

most common function used for hidden layers in Machine

Learning studies40). The ReLU function returns the input itself

when the input is positive and returns 0 when the input is 0 or

less than 0. Since only a certain number of neurons are acti-

vated in this case, the ReLU function effectively mitigates the

vanishing gradient problem. This problem occurs when the

derivative exponentially diminishes across multiple layers,

resulting in the gradient approaching zero and hindering

weight updates during backpropagation. The ReLU function

avoids the gradient vanishing problems and enables faster and

more efficient learning processes41). The output layer typically

uses a different activation function from the hidden layers. a

sigmoid function were selected, which has a very convenient

first derivative and is popular in neural network research42).

The sigmoid function is an efficient way of producing an output

p∈[0,1], which can be interpreted as a probability. Plots of the

ReLU function and sigmoid function are shown in Figure 2.
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Fig. 2. ReLU function and Sigmoid function used.

Fig. 1. A model of an Artificial Neural Network (ANN) structure for predicting box compression strength (BCS) using inputs provided

by the McKee data set.
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This study involved running programming tasks on an HP

Laptop 15t-dy100 featuring an Intel(R) Core(TM) i5-1035G1

CPU, operating at a processing speed of 1.00GHz. The coding

process to train the ANN model was conducted using Jupiter

Notebook software, an integrated development environment

(IDE). Figure 3 illustrates the sequential steps in constructing

an ANN model. The training duration varied depending on the

dataset's size and characteristics, influenced by the combi-

nation of hardware and software. For instance, training a smaller

data set of around 60 data points took approximately 3 min-

utes, whereas training a larger data set comprising approx-

imately 3000 data points required about 30 minutes.

In this study, three datasets were trained to build an ANN

model for BCS estimation. The three data sets include the

McKee data set, an idealized data set and a data set with varia-

tion. The McKee data set is from literature presented by

McKee in 19639), specifically compiled for BCS estimation. It

consists of 63 data points derived from box compression

testing. The idealized data set is a synthetic data set based on

McKee equation9). This data set was generated by including

the box dimensions, ECT values, and thicknesses of 3,009

boxes commonly used in commerce and substituting them

into the McKee equation. The data set with variation was crea-

ted by introducing random error to the parameters of the idea-

lized data set's boxes. BCS values were then calculated using

the McKee equation9). This process was carried out to achieve

a variation of ±5.4% for BCS. It contains an equivalent num-

ber of data points as the idealized data set. Detailed descrip-

tions of these three datasets are provided in the ANN training

section, delineating the specifics for each dataset.

2. Artificial Neural Networks (ANN) and McKee Date

Set
Like many of the modeling efforts in the industry, we begin

our exploration of the applicability of ANNs on box com-

pression estimation with the work of McKee et.al., Their

model was built using 63 data points including A-, B-, and C-

flute boxes. This data set captured information on ECT, flex-

ural stiffness in the machine and cross-machine directions of

the combined board (Elx and Ely), caliper of the corrugated

board, and the length, width, and depth of the box. Those

seven physical parameters serve as the input parameters for an

ANN model with BCS as the output, as shown in Figure 1. Of

note, these parameters are not independent - flexural stiffness

depends in part on the caliper of the board. Including all the

available parameters in the data allows the ANN to appro-

priately assess the relative importance of each parameter to

BCS estimation.

To assess our ANN given the limited data presented by

McKee et.al., the 63 data points were split into 42 training

data points and 21 testing data points. Two hidden layers were

implemented to generate the output value (BCS). We initially

considered utilizing 200 epochs for conducting the calcula-

tions.

Model accuracy and consistency can be influenced by many

modeling factors. The first task in developing an ANN model

includes optimizing neuron number combinations in each of

the hidden layers. We implemented an exhaustive search

method43) examining different neuron number combinations

in the various layers, as shown in Figure 4: To assess the

model accuracy, the neuron numbers for the first hidden layer

were examined ranging from 80 to 184 (with an increment of

8). Similarly, for the second hidden layer, the neuron numbers

were examined from 24 to 42 (with an increment of 3). The

MSE was calculated for each combination to evaluate the

model's accuracy. In each case a random selection of data

points from the underlying data set was used, which has impli-

cations on the robustness of the minimum MSE. The min-

imum MSE occurred with 160 neurons in the first hidden

layer and 36 in the second hidden layer. To confirm this result,

the increments for both hidden layers were reduced. The

increment of 8 in the first hidden layer decreased to 2, and the

increment of 3 in the second hidden layer decreased to 1.

Remarkably, even with these decreased increments, the min-

Fig. 3. Flow for building an ANN model for BCS estimation.
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imum MSE still occurred with the same combination of neu-

ron numbers. That structure was maintained for the analysis of

the McKee data. Notably, this allows for substantially more

degrees of freedom in the model than the available data in the

McKee data set. Those degrees of freedom may account for the

variation observed across different combinations in Figure 4.

To understand the computational load further, we explored

how the number of epochs impacted model convergence.

While again this calculation is not resource intensive for a

small data set like the one provided by McKee et.al., it

becomes critical to stop the process at convergence once the

data set grows. Figure 5 illustrates that the MSE begins to con-

verge in less than 50 epochs. As the number of epochs

increases up to 200, the MSE reduction rate becomes increas-

ingly slow, with minimal improvement. To strike a balance

between computational time and accuracy, we select a stop-

ping point when the MSE reduction rate falls below 3.0%.

This threshold is typically reached at approximately 100

epochs, ensuring optimal computational efficiency without

significantly compromising accuracy. 

The number of data points plays a very important role in the

ANN accuracy. Figure 6 displays how the number of data

points influences the ANN accuracy. Exploring different total

population sizes from 30 to the full data set of 63 points, the

chosen population was randomly divided into training data (2/

3 of the points) and testing data (1/3 of the points). In the

modeling process, partitions of underlying data vary from

modeling cycle to cycle. This can have a significant impact on

the model accuracy due to some special data points may fall

into training data in a given cycle and fall into testing data in

the subsequent cycle. To assess the impact of variation in the

input data on model results and predictions, the process of par-

titioning a data set into training and testing data was regularly

repeated. Multiple modeling cycles were performed. For the

McKee data set, a sufficient number of “modeling cycles” of

60 were performed in each population size from 30 data points

Fig. 4 Mean Squared Error (MSE) calculations for the model using McKee data with varying numbers of neurons in each of two hidden

layers for the McKee data set. The error is minimized for 160 neurons in the first layer and 36 neurons in the second.

Fig. 5. MSE versus epoch plot of different data numbers

(McKee data set).

Fig. 6. Average error in estimated box compression strength

given different subsets of the data (McKee data set), each run

through 60 modeling cycles. Note error bars indicate 95% con-

fidence intervals on the mean values.
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to the full data set. Overall, the calculation process reflects a

confidence interval on the model output related to the breadth

of variation in potential input data sets. The confidence inter-

vals around the mean error reflected the ANN training accu-

racy, as shown in Figure 6. As expected, ANN accuracy

increases with population size. For this small data set like the

McKee data set, ANN accuracy of the whole data set is nota-

bly higher than that of the partial data set, which concludes

that the whole data set is needed for the McKee data set to

minimize the error.

Since ANN randomly splits the data into training and test-

ing data in the modeling process, each modeling cycle can

have different underlying data partitions. As a result, each

modeling cycle can generate a unique model that optimally

fits the training data provided but can produce very different

values for the error when assessing the testing data. Therefore,

it is important to understand how many modeling cycles are

required to have results converge to a “typical” reliability. To

investigate the impact of different underlying data partitions

on the accuracy of the ANN, various numbers of modeling

cycles were examined. Figure 7 shows that when we par-

titioned the full McKee data set (all 63 points), the training

data accuracy remained relatively consistent as the number of

evaluation cycles increased. The average testing data accuracy

converged after roughly 60 rounds of testing, very similar to

the total number of data points in the database.

We have explored four modeling factors common in the

ANN process using the data presented by McKee: the com-

bination of neuron numbers in hidden layers, the number of

epochs, the number of modeling cycles, and the number of

data points in a data set. An optimal combination of neuron

numbers in hidden layers can minimize the MSE and increase

the ANN accuracy for BCS estimation. As the epoch number

increases, the MSE reduction rate becomes increasingly slow.

To strike a balance between computational time and accuracy,

a stopping point when the MSE reduction rate falls below

3.0% was selected to ensure optimal computational efficiency

without significantly compromising accuracy. Consistency for

the ANN model is realized when the number of modeling

cycles reaches a critical number for a given population size,

and a minimum number of data points can be identified at

which the MSE is minimized, and the ANN is most robust.

We carry these observations forward into our analysis of

larger, more generalizable data sets.

3. Artificial Neural Networks (ANN) and An Idealized

Data Set
McKee et.al.’s simplified model for box compression

strength can be used to explore the applicability of ANN to

compression strength estimation. However, the limited size of

their data set constrains the ANN approach as noted above.

Therefore, a larger data set is desirable. Using the simplified

McKee equation9) as shown in equation (3), a synthetic data

set could be generated.

  (3)

In this way, the “idealized” data set was created with 3,009

data points. These data points represent boxes with ranges in

length, width, aspect ratio, ECT, caliper and flute types (B- &

C-flute) commonly used in North America (Table 1). Note

that each “data point” discussed in this section is a specific set

of information defining the physical properties of the box

(lengths, width, caliper, and ECT) and the associated BCS cal-

culated using equation (3).

Given the “perfect” nature of the fabricated data set, it is

obvious that a simple least-squares fit of equation (3) to the

input parameters reproduces the BCS values with 100% accu-

racy and 0% error. With a data set this large, one might also

hope to overcome the ANN challenges experienced in fitting

the much more limited data from McKee, and potentially

reproduce the expected values in a test data subset perfectly,

with close to no variation from the actual values.

To start this process, 67% of the data set (2,016 randomly

selected samples) were used for the ANN training process and

the rest were used for evaluation of the resulting model. With

200 epochs, the optimal neuron number combination in the

BCS 5.87 ECT× Caliper Perimeter××=

Fig. 7. Mean of average error in estimated box compression

strength given different numbers of modeling cycles. Note that

the testing data values converge after 60 modeling cycles

(McKee data set). Error bars indicate 95% confidence intervals

on the mean values.

Table 1. Minimum and maximum values of the data incor-

porated in the idealized data set

Property Min Max

Length (cm) 19.05 99.38

Width (cm) 12.70 76.96

L/W (aspect ratio) 1.00 4.00

Perimeter (cm) 71.12 346.71

Caliper (cm) 0.26 0.44

ECT (lbs/inch) 64.77 228.35
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hidden layers was again explored using an exhaustive search

method. Figure 8 displays the examination of neuron numbers

in the first hidden layer, ranging from 128 to 160 (with an

increment of 8), as well as the examination of neuron numbers

in the second hidden layer, ranging from 24 to 48 (with an

increment of 3). The MSE was calculated for each combi-

nation to assess the model's accuracy. The MSE was min-

imized with 144 neurons in the first hidden layer and 45

neurons in the second hidden layer. To validate this result, the

increments for both hidden layers were reduced to 1. Notably,

the minimum MSE was observed with 142 neurons in the first

hidden layer and 45 neurons in the second hidden layer. As

with our McKee analysis above, this number of neurons pro-

vides more degrees of freedom in our modeling space than

data sets in our model population. Note that the MSE is much

lower than for the McKee data set because the data is perfect.

However, the values are not zero indicating some residual

uncertainty in the estimation of BCS even for this idealized

data.

In exploring the idealized dataset, a similar approach to the

McKee dataset analysis in ANN was followed. The impact of

the number of epochs on the model MSE was investigated, as

depicted in Figure 9-a). As the number of epochs increased up

to 200, a decreasing trend in MSE with significant fluctuations

was observed. However, the rate of MSE reduction started

slowing down. To provide a clearer view without the distur-

bance of MSE fluctuations, the Moving Average technique44)

was applied to create a smoothed graph, as illustrated in Fig-

ure 9-b). This revealed that the MSE experienced a rapid

decrease before reaching 50 epochs. From 50 to 200 epochs,

the MSE decreased steadily, and the large fluctuations dis-

appeared after 140 epochs. Similar to the study of the McKee

data set, to strike a balance between computational time and

accuracy, a stopping point was selected when the MSE reduc-

tion rate falls below 3.0% after applying the Moving Average

technique. This threshold is typically reached at approxi-

mately 140 epochs, ensuring optimal computational efficiency

without significantly compromising accuracy.

When examining the full data set of 3,009 data points, the

ANN accuracy remained relatively consistent while the con-

fidence interval around the mean error decreased as the num-

ber of modeling cycles increased (Figure 10). To better under-

stand why the error in the model was not zero as might be

expected for a model fitting “perfect” data, the specific results

from each cycle were examined. It was observed that the BCS

errors of four data points in particular always showed higher

estimation error than other data points. Those four data points

are at the limits of the data set (or boundary data points). Fig-

ure 11 shows the frequency of the actual BCS values. As is

typical for data at the end points of a distribution, these four

points have excessive leverage in the modeling. Their impact

on model accuracy in test data depends on what adjacent

points happen to be in the training data. When the boundary

data points are randomly selected to be part of the testing data

and thus do not appear in the training data, the result tends to

show higher BCS average error. The average error across mul-

tiple cycles is impacted by this contribution.

To see the influence of population size on the ANN accu-

racy for the perfect model (similar to Figure 6 above), we

examined populations from 600 to 3,009 data points using 10

modeling cycles. The results show that the mean of BCS aver-

age errors fluctuates notably when we consider a limited number

of data subsets (Figure 12). Even for this larger population, the

influence of limiting population size can have a meaningful

impact if we don’t iterate the process sufficiently. For 50

cycles, the mean of BCS average error decreased steadily as

the data included increased, and the BCS average error levels

out at ~1,500 data points. This suggests that the influence of

modeling cycles and population size need to be considered

together.

The combination of neuron numbers, the number of epochs,

the number of modeling cycles, and the number of data points

impacts the accuracy of the ANN prediction. Even when using

the full data population (>3000 data points) and many mod-

eling cycles on a perfect data set generated by a closed form

equation, the average relative error of the BCS prediction is

not zero. From Figure 12, in conjunction with Figure 10, this

analysis identifies the error contribution of the ANN approach

Fig. 8. Mean Squared Error (MSE) calculations for the model using idealized data with varying numbers of neurons in each of two

hidden layers for the idealized data set. The error is minimized for 142 neurons in the first layer and 45 neurons in the second.
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itself at around 0.4% when estimating BCS from this type of

data and data sets of this size. This residual error is inde-

pendent of any physical properties; rather, it arises from the

ANN process itself. As such, we would expect it to be addi-

tive10) to any other errors that may arise in using a model for

prediction, including measurement errors of the input param-

eters to the model as well as fundamental errors in the model

functional form.

4. Artificial Neural Networks (ANN) and A Data Set

with Variation
Variation occurs naturally in all processes. Typical variation

in measurement of inputs associated with the performance of

a corrugated box are on the order of 4-5% for measured quan-

tities like ECT and BCS. To further study if and how the ANN

model works while handling a data set incorporating variation,

we modified the ideal set to represent boxes that might appear

in commerce. We added fluctuations to each input value, using

randomized, normally distributed values on the order of the

variation observed in the different test methods. As with the

idealized data set, a “data point” represents a specific set of

information defining the physical properties of the box

(lengths, width, caliper, and ECT) and the associated BCS cal-

culated by equation (3). The average absolute difference

Fig. 9. Mean Squared Error (MSE) of the fits as a function of epochs for different sized data subsets from the idealized data set. 6a

displays the raw MSE calculated for each epoch, while 6b presents smoothed data, more clearly displaying the asymptotic nature of

the functional relationships.
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between the new predicted BCS values for the 3,009 data

points and the “actual” BCS of the idealized model was

obtained by adding variations to the input parameters and cal-

culated by equation (3). This process was carried out to

achieve a variation of ±5.4% for BCS. We then followed the

same process as for the idealized data set: 67% of the data set

(2,016 randomly selected samples) were used for the ANN

training process and the remaining were used for evaluation of

the model. We used the same number of epochs and neuron

numbers in hidden layers as in the idealized modeling. 

To explore the impact of the epoch number on the ANN

model convergence, the model was run on different subsets of

data to 250 epochs. Again, the MSE decreased rapidly in the

first several epochs for all data subsets (Figure 13) and the

largest data set had the lowest MSE for any epoch. As with the

earlier modeling, Figure 13-a) displays the raw MSE cal-

culated for each epoch and Figure 13-b) presents smoothed

data to highlight the asymptotic behavior. As expected, since

we added variation to the input data, the MSE values are all

much larger than the idealized data set of Figure 9.

We modeled different population sizes as above to again

identify the influence of population size on ANN accuracy

(Figure 14). The accuracy of both the training data and testing

data remained relatively consistent as the number of modeling

cycles increased. While the accuracy of the training data was

in line with expectations from the variation built into the data

set (~5.4%), the influence of limiting population size can have

a meaningful impact if we don’t iterate the process suffi-

ciently. Notably, the ANN approach was not working with any

more information than the closed form equation itself, and so

the prediction accuracy did not improve upon what we would

Fig. 10. Mean of average error in estimated box compression

strength given different numbers of modeling cycle (Idealized

data set). Note error bars indicate 95% confidence intervals on

the mean values.

Fig. 11. BCS distribution of 3,009 data points (Idealized data set).

Fig. 12. Average error in estimated box compression strength

given different numbers with same modeling cycles of 10 and

50 (Idealized data set). Note error bars indicate 95% confidence

intervals on the mean values.

Fig. 13. Mean Squared Error (MSE) of the fits as a function of

epochs for different sized data subsets from the variation data

set. 10a displays the raw MSE calculated for each epoch, while

10b presents smoothed data, more clearly displaying the

asymptotic nature of the functional relationships.
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get from the closed form equation. Test data accuracy didn’t

begin to converge until around 1500 data points when we used

20 modeling cycles, yet accuracy occurred slightly sooner

(~1250 data points) when we used 70 modeling cycles. The

BCS average error levels out at 2,500 data points, nearly the

entire data set, at a value combining the inherent uncertainty

in the input data and the uncertainty of the ANN process itself,

identified above. This is notably larger than for the idealized

data, because of the influence of variation in the input param-

eters. As with the idealized data above, the influence of mod-

eling cycles and population size need to be considered

together. The minimum data population size to get a robust

result is also larger for the variation data set.

Conclusions

In this study we explored BCS estimation using Artificial

Neural Networks across input data sets that included both

actual data from the literature and data based on literature

models. Partitioning each data set into test and training subsets

and running multiple modeling cycles on different partitions

provides an analysis of average model estimation accuracy

that can be expected when the resulting models encounter new

data. An ANN model with high accuracy and consistency can

be built by adjusting four modeling factors: the combination

of neuron numbers in hidden layers, the number of epochs, the

number of modeling cycles, and the size of the data set. All

four interact to influence model accuracy and can be opti-

mized by minimizing model MSE. The combination of neu-

ron numbers in the two hidden layers was determined as 160

and 36 for the McKee data set, and 142 and 45 for the ide-

alized data set. Employing the same stopping criterion, where

the MSE reduction rate is required to be below 3.0%, the

epoch numbers were established as 100 for the McKee data

set and 140 for the idealized data set. To ensure a robust result

with high consistency in the ANN, it was found that 60 mod-

eling cycles are needed for the McKee data set, 50 modeling

cycles are required for the idealized data set, and 70 modeling

cycles are necessary for the data set with variation. The data

size needed to get a robust result varies based on the input data

variations and can be identified by minimizing average BCS

error: For the McKee data set, 63 data points are not enough

for an ANN to predict the BCS reasonably. The other two data

sets (idealized data set and data set with variation) need at

least 1000 data points to get a robust result for ANN pre-

diction. The data size needed is significant and data collection

can be expensive considering the physical testing required.

Our ANN models had more degrees of freedom than the num-

ber of underlying data sets, which might lead us to expect that

we could perfectly fit the underlying data and achieve BCS

estimations very close to “measured” values. Instead, we found

that model estimation accuracy remains limited by the uncer-

tainty or error in the input parameters combined with uncer-

tainty from the ANN process itself. The variation of input

parameters had a positive correlation with an ANN process

(high variation increases the training error and vice versa). By

identifying the challenges of small data sets and the inter-

relationship between modeling parameters and the estimation

error in the data space, this study provides a methodological

guide for future research exploring the applicability of ANN

approaches to address problems and answer questions in the

corrugated industry. 
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